AEROSPACE STARTUPS

By Chiara Nespoli, Leopoldo Schiavi, Luis Pericchi, Benedetta Zanini

FOUNDATION: 2011

FOUNDERS: Alexander Zosel and Stephan Wolf

HEADQUARTER: Bruchsal, Germany

CEO: Dirk Hok

AIM: The company specializes in the design of personal air vehicles for air taxi use.

VOLOCOPTER

"We bring air mobility to life"

PROBLEMS OF URBAN MOBILITY: □ TRAFFIC CONGESTION

- □ LIMITED INFRASTRUCTURE
- ENVIRONMENTAL IMPACT

VOLOCOPTER

VOLOCITY

AIM	Transportation of passengers between key transportation hubs
SEATS	2
ROTORS	18
DISTANCE COVERD	35 km
MAX SPEED	110 km/h
CERTIFICATION	EASA, FAA 2023

VOLOCOPTER

VOLOCITY IN PARIS 2024

"We went. We tested. We'll fly there for real"

WHY PARIS?

ROUTES

DENSELY POPULATED CAPITAL POPULAR TOURIST DESTINATION PARTNERSHIP WITH GROUPE ADP AND RATP SIGNATURE OF A MOU

WHEN? IN TIME FOR THE 2024 OLYMPIC AND PARALYMPIC GAMES.

 Paris-Charles de Gaulle airport
 Paris-Le Bourget airport

 Vertiport of Austerlitz barge
 Paris Heliport

 Paris Heliport
 Airfield of Saint-Cyr-l'École

FOUNDATION: 2021

FOUNDER: Tom Mueller

HEADQUARTER: El Segundo, California

CEO: Tom Mueller

AIM: The company specializes in the delivery of payloads.

IMPULSE SPACE

"The next generation of orbital maneuvering spacecraft"

IMPULSE SPACE

MIRA

PAYLOAD CAPACITY	Up to 300 kg
PAYLOAD VOLUME	50 x 73 x 50 cm (x2)
DELTA-V	600 m/s
MIRA WET MASS	250 kg
PROPELLANT	Ethane and nitrous oxide

STARTUP PIONEERS IN SPACE TRASPORTATION

□ MARS MISSION

□ SERIES A FUNDING ROUND (\$45 million)

□ SEED FUNDING ROUND (\$30 million)

□ MARKET LEADERSHIP GOALS

□ VERTICAL INTEGRATION

Relati;ity

FOUNDATION: 2015

FOUNDERS: Tim Ellis and Jordan Noone

HEADQUARTER: California, US

CEO:Tim Ellis

AIM: Make 3D printed rockets with all parts being made inhouse.

RELATIVITY SPACE

3D Printed Rockets

PROBLEMS OF MANUFACTURING: THOUSANDS OF PARTS
 CONTRACTORS
 NON-SCALABLE

SOLUTION Use 3D printers to DIY at every step

TERRA 1

AIM	Reach Orbit with the first 3D printed rocket
DEVELOPED	2017-2023
LAUNCHED	2023
ENGINE CYCLE	Methalox

TERRAN R

AIM	Reusable 3D rocket capable of supporting Martian missions
DEVELOPED	2022-PRESENT
LAUNCH	SET FOR 2026
ENGINE CYCLE	Methalox

Problem SpinLaunch is trying to solve: Rocket Equation

Equation 1:

$$\Delta v = k \cdot \ln\left(\frac{m_0}{m_f}\right) \tag{1}$$

(2)

Equation 2:

$$\frac{m_f}{m_0} = e^{-\frac{\Delta v}{k}}$$

Equation 3:

$$m_0 \left(1 - \frac{m_f}{m_0} \right) = m_{fuel} \tag{3}$$

Caption:

 m_0 = initial mass of the rocket, m_f = final mass of the rocket, Δv = velocity variation, k = constant.

SPINLAUNCH

Solution proposed: electric reusable launcher that releases a rocket at hypersonic speed.

Rocket reaches 72 km of altitude using kinetic energy only.

Launcher and Launch stages

Maximal mass of the rocket: 200 kg

FOUNDATION: 2014

FOUNDER: Jonathan Yaney

HEADQUARTER: Long Beach, California

TEST SITE: Space Port New Mexico

RELEVANT INVESTORS: Airbus Ventures, Google Ventures

Value proposition: high frequency reusable launcher that requires low fuel quantity per launch.

Objectives:

- Reducing cost per launch per kilogram
- Reducing exhaust emissions
- Using reusable components

SpinLaunch goal: reach price of 2500 \$/kg

Results so far

Launch System Development Timeline

SpinLaunch has been testing inside the Lab and has implemented the suborbital launcher, a prototype that is 1/3 of the envisioned Orbital launcher.

10 test launches has been performed up to September 2022.

2017 **Tech Dev** 12 meter

2021 **Flight Test & Scaling**

33 meter

2025 (planned) **Commercial Launch Services**

100 meter

THANK YOU FOR YOUR ATTENTION